Carfilzomib Triggers Cell Death in Chronic Lymphocytic Leukemia by Inducing Proapoptotic and Endoplasmic Reticulum Stress Responses.
نویسندگان
چکیده
PURPOSE Carfilzomib, while active in B-cell neoplasms, displayed heterogeneous response in chronic lymphocytic leukemia (CLL) samples from patients and showed interpatient variability to carfilzomib-induced cell death. To understand this variability and predict patients who would respond to carfilzomib, we investigated the mechanism by which carfilzomib induces CLL cell death. EXPERIMENTAL DESIGN Using CLL patient samples and cell lines, complementary knockdown and knockout cells, and carfilzomib-resistant cell lines, we evaluated changes in intracellular networks to identify molecules responsible for carfilzomib's cytotoxic activity. Lysates from carfilzomib-treated cells were immunoblotted for molecules involved in ubiquitin, apoptotic, and endoplasmic reticulum (ER) stress response pathways and results correlated with carfilzomib cytotoxic activity. Coimmunoprecipitation and pull-down assays were performed to identify complex interactions among MCL-1, Noxa, and Bak. RESULTS Carfilzomib triggered ER stress and activation of both the intrinsic and extrinsic apoptotic pathways through alteration of the ubiquitin proteasome pathway. Consequently, the transcription factor CCAAT/enhancer-binding protein homology protein (CHOP) accumulated in response to carfilzomib, and CHOP depletion conferred protection against cytotoxicity. Carfilzomib also induced accumulation of MCL-1 and Noxa, whereby MCL-1 preferentially formed a complex with Noxa and consequently relieved MCL-1's protective effect on sequestering Bak. Accordingly, depletion of Noxa or both Bak and Bax conferred protection against carfilzomib-induced cell death. CONCLUSIONS Collectively, carfilzomib induced ER stress culminating in activation of intrinsic and extrinsic caspase pathways, and we identified the CHOP protein level as a biomarker that could predict sensitivity to carfilzomib in CLL. Clin Cancer Res; 22(18); 4712-26. ©2016 AACR.
منابع مشابه
Role of Oxidative Stress in Modulating Unfolded Protein Response Activity in Chronic Myeloid Leukemia Cell Line
Background: Recently, it has been revealed that tyrosine kinase inhibitors (TKIs) act through inducing both oxidative and endoplasmic reticulum (ER) stress in chronic myeloid leukemia cells. However, ER stress signaling triggers both apoptotic and survival processes within cells. Nevertheless, mechanisms by which TKIs avoid the pro-survival effects are not clear. The aim of this study was to ev...
متن کاملNovel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL.
A better understanding of apoptotic signaling in B-chronic lymphocytic leukemia (B-CLL) cells may help to define new therapeutic strategies. This study investigated endoplasmic reticulum (ER) stress signaling in spontaneous apoptosis of B-CLL cells and whether manipulating ER stress increases their apoptosis. Results show that a novel ER stress-triggered caspase cascade, initiated by caspase-4 ...
متن کاملCap-translation inhibitor, 4EGI-1, restores sensitivity to ABT-737 apoptosis through cap-dependent and -independent mechanisms in chronic lymphocytic leukemia.
PURPOSE The lymph node microenvironment promotes resistance to chemotherapy in chronic lymphocytic leukemia (CLL), partly through induction of BCL2 family prosurvival proteins. Currently available inhibitors do not target all BCL2 family prosurvival proteins and their effectiveness is also modified by proapoptotic BCL2 homology domain 3 (BH3) only protein expression. The goal of this study was ...
متن کاملActivated ERBB2/HER2 licenses sensitivity to apoptosis upon endoplasmic reticulum stress through a PERK-dependent pathway.
HER2/Neu/ERBB2 is a receptor tyrosine kinase overexpressed in approximately 20% of human breast tumors. Truncated or mutant isoforms that show increased oncogenicity compared with the wild-type receptor are found in many breast tumors. Here, we report that constitutively active ERBB2 sensitizes human breast epithelial cells to agents that induce endoplasmic reticulum stress, altering the unfold...
متن کاملER stress and autophagy: new discoveries in the mechanism of action and drug resistance of the cyclin-dependent kinase inhibitor flavopiridol.
Cyclin dependent kinase (CDK) inhibitors, such as flavopiridol, demonstrate significant single-agent activity in chronic lymphocytic leukemia (CLL), but the mechanism of action in these nonproliferating cells is unclear. Here we demonstrate that CLL cells undergo autophagy after treatment with therapeutic agents, including fludarabine, CAL-101, and flavopiridol as well as the endoplasmic reticu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 22 18 شماره
صفحات -
تاریخ انتشار 2016